Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578285

RESUMEN

IRE1α is an endoplasmic reticulum (ER) sensor that recognizes misfolded proteins to induce the unfolded protein response (UPR). We studied cholera toxin (CTx), which invades the ER and activates IRE1α in host cells, to understand how unfolded proteins are recognized. Proximity labeling colocalized the enzymatic and metastable A1 segment of CTx (CTxA1) with IRE1α in live cells, where we also found that CTx-induced IRE1α activation enhanced toxicity. In vitro, CTxA1 bound the IRE1α lumenal domain (IRE1αLD), but global unfolding was not required. Rather, the IRE1αLD recognized a seven-residue motif within an edge ß-strand of CTxA1 that must locally unfold for binding. Binding mapped to a pocket on IRE1αLD normally occupied by a segment of the IRE1α C-terminal flexible loop implicated in IRE1α oligomerization. Mutation of the CTxA1 recognition motif blocked CTx-induced IRE1α activation in live cells, thus linking the binding event with IRE1α signal transduction and induction of the UPR.


Asunto(s)
Toxina del Cólera , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Respuesta de Proteína Desplegada , Toxina del Cólera/genética , Toxina del Cólera/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Humanos , Animales , Ratones , Línea Celular
2.
J Clin Invest ; 132(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35727638

RESUMEN

Epithelial cells lining mucosal surfaces of the gastrointestinal and respiratory tracts uniquely express ERN2/IRE1ß, a paralogue of the most evolutionarily conserved endoplasmic reticulum stress sensor, ERN1/IRE1α. How ERN2 functions at the host-environment interface and why a second paralogue evolved remain incompletely understood. Using conventionally raised and germ-free Ern2-/- mice, we found that ERN2 was required for microbiota-induced goblet cell maturation and mucus barrier assembly in the colon. This occurred only after colonization of the alimentary tract with normal gut microflora, which induced Ern2 expression. ERN2 acted by splicing Xbp1 mRNA to expand ER function and prevent ER stress in goblet cells. Although ERN1 can also splice Xbp1 mRNA, it did not act redundantly to ERN2 in this context. By regulating assembly of the colon mucus layer, ERN2 further shaped the composition of the gut microbiota. Mice lacking Ern2 had a dysbiotic microbial community that failed to induce goblet cell development and increased susceptibility to colitis when transferred into germ-free WT mice. These results show that ERN2 evolved at mucosal surfaces to mediate crosstalk between gut microbes and the colonic epithelium required for normal homeostasis and host defense.


Asunto(s)
Células Caliciformes , Proteínas de la Membrana , Microbiota , Proteínas Serina-Treonina Quinasas , Animales , Colon/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de la Membrana/genética , Ratones , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo
3.
Microbiome ; 9(1): 183, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493329

RESUMEN

BACKGROUND: P-glycoprotein (P-gp) plays a critical role in protection of the intestinal epithelia by mediating efflux of drugs/xenobiotics from the intestinal mucosa into the gut lumen. Recent studies bring to light that P-gp also confers a critical link in communication between intestinal mucosal barrier function and the innate immune system. Yet, despite knowledge for over 10 years that P-gp plays a central role in gastrointestinal homeostasis, the precise molecular mechanism that controls its functional expression and regulation remains unclear. Here, we assessed how the intestinal microbiome drives P-gp expression and function. RESULTS: We have identified a "functional core" microbiome of the intestinal gut community, specifically genera within the Clostridia and Bacilli classes, that is necessary and sufficient for P-gp induction in the intestinal epithelium in mouse models. Metagenomic analysis of this core microbial community revealed that short-chain fatty acid and secondary bile acid production positively associate with P-gp expression. We have further shown these two classes of microbiota-derived metabolites synergistically upregulate P-gp expression and function in vitro and in vivo. Moreover, in patients suffering from ulcerative colitis (UC), we find diminished P-gp expression coupled to the reduction of epithelial-derived anti-inflammatory endocannabinoids and luminal content (e.g., microbes or their metabolites) with a reduced capability to induce P-gp expression. CONCLUSION: Overall, by means of both in vitro and in vivo studies as well as human subject sample analysis, we identify a mechanistic link between cooperative functional outputs of the complex microbial community and modulation of P-gp, an epithelial component, that functions to suppress overactive inflammation to maintain intestinal homeostasis. Hence, our data support a new cross-talk paradigm in microbiome regulation of mucosal inflammation. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Animales , Microbioma Gastrointestinal/genética , Homeostasis , Humanos , Mucosa Intestinal , Ratones
4.
J Cell Biol ; 219(2)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31985747

RESUMEN

IRE1ß is an ER stress sensor uniquely expressed in epithelial cells lining mucosal surfaces. Here, we show that intestinal epithelial cells expressing IRE1ß have an attenuated unfolded protein response to ER stress. When modeled in HEK293 cells and with purified protein, IRE1ß diminishes expression and inhibits signaling by the closely related stress sensor IRE1α. IRE1ß can assemble with and inhibit IRE1α to suppress stress-induced XBP1 splicing, a key mediator of the unfolded protein response. In comparison to IRE1α, IRE1ß has relatively weak XBP1 splicing activity, largely explained by a nonconserved amino acid in the kinase domain active site that impairs its phosphorylation and restricts oligomerization. This enables IRE1ß to act as a dominant-negative suppressor of IRE1α and affect how barrier epithelial cells manage the response to stress at the host-environment interface.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/fisiología , Proteínas de la Membrana/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Células CACO-2 , Endorribonucleasas/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/genética , Proteostasis , Análisis de Secuencia de Proteína , Transducción de Señal , Estrés Fisiológico , Respuesta de Proteína Desplegada
6.
Traffic ; 16(6): 572-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25690058

RESUMEN

How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis , Microtúbulos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Toxina del Cólera/metabolismo , Clatrina/metabolismo , Dineínas/metabolismo , Células HeLa , Humanos , Unión Proteica , Receptores de Transferrina/metabolismo
7.
Cell Host Microbe ; 13(5): 558-569, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23684307

RESUMEN

The plasma membrane and all membrane-bound organelles except for the Golgi and endoplasmic reticulum (ER) are equipped with pattern-recognition molecules to sense microbes or their products and induce innate immunity for host defense. Here, we report that inositol-requiring-1α (IRE1α), an ER protein that signals in the unfolded protein response (UPR), is activated to induce inflammation by binding a portion of cholera toxin as it co-opts the ER to cause disease. Other known UPR transducers, including the IRE1α-dependent transcription factor XBP1, are dispensable for this signaling. The inflammatory response depends instead on the RNase activity of IRE1α to degrade endogenous mRNA, a process termed regulated IRE1α-dependent decay (RIDD) of mRNA. The mRNA fragments produced engage retinoic-acid inducible gene 1 (RIG-I), a cytosolic sensor of RNA viruses, to activate NF-κB and interferon pathways. We propose IRE1α provides for a generalized mechanism of innate immune surveillance originating within the ER lumen.


Asunto(s)
Toxina del Cólera/inmunología , Toxina del Cólera/metabolismo , ARN Helicasas DEAD-box/inmunología , Endorribonucleasas/inmunología , Endorribonucleasas/metabolismo , Inmunidad Innata , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Línea Celular , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Humanos , Unión Proteica , Receptores Inmunológicos
8.
J Clin Invest ; 120(12): 4399-4409, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21041954

RESUMEN

Cholera toxin (CT) causes the massive secretory diarrhea associated with epidemic cholera. To induce disease, CT enters the cytosol of host cells by co-opting a lipid-based sorting pathway from the plasma membrane, through the trans-Golgi network (TGN), and into the endoplasmic reticulum (ER). In the ER, a portion of the toxin is unfolded and retro- translocated to the cytosol. Here, we established zebrafish as a genetic model of intoxication and examined the Derlin and flotillin proteins, which are thought to be usurped by CT for retro-translocation and lipid sorting, respectively. Using antisense morpholino oligomers and siRNA, we found that depletion of Derlin-1, a component of the Hrd-1 retro-translocation complex, was dispensable for CT-induced toxicity. In contrast, the lipid raft-associated proteins flotillin-1 and -2 were required. We found that in mammalian cells, CT intoxication was dependent on the flotillins for trafficking between plasma membrane/endosomes and two pathways into the ER, only one of which appears to intersect the TGN. These results revise current models for CT intoxication and implicate protein scaffolding of lipid rafts in the endo-somal sorting of the toxin-GM1 complex.


Asunto(s)
Toxina del Cólera/toxicidad , Proteínas de la Membrana/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Transporte Biológico Activo , Células COS , Línea Celular , Chlorocebus aethiops , Toxina del Cólera/farmacocinética , Endosomas/metabolismo , Gangliósido G(M1)/metabolismo , Humanos , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , ARN Interferente Pequeño/genética , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
9.
J Biol Chem ; 285(9): 6145-52, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20056601

RESUMEN

Cholera toxin travels from the plasma membrane to the endoplasmic reticulum of host cells, where a portion of the toxin, the A1-chain, is unfolded and targeted to a protein-conducting channel for retrotranslocation to the cytosol. Unlike most retrotranslocation substrates, the A1-chain escapes degradation by the proteasome and refolds in the cytosol to induce disease. How this occurs remains poorly understood. Here, we show that an unstructured peptide appended to the N terminus of the A1-chain renders the toxin functionally inactive. Cleavage of the peptide extension prior to cell entry rescues toxin half-life and function. The loss of toxicity is explained by rapid degradation by the proteasome after retrotranslocation to the cytosol. Degradation of the mutant toxin does not follow the N-end rule but depends on the two Lys residues at positions 4 and 17 of the native A1-chain, consistent with polyubiquitination at these sites. Thus, retrotranslocation and refolding of the wild-type A1-chain must proceed in a way that protects these Lys residues from attack by E3 ligases.


Asunto(s)
Toxina del Cólera/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Pliegue de Proteína , Animales , Chlorocebus aethiops , Toxina del Cólera/química , Toxina del Cólera/genética , Semivida , Lisina , Péptidos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Conformación Proteica , Estabilidad Proteica , Transporte de Proteínas , Ubiquitina-Proteína Ligasas/metabolismo , Células Vero
10.
Methods Mol Biol ; 341: 127-39, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16799195

RESUMEN

Asiatic cholera is a rapidly progressing disease resulting in extreme diarrhea and even death. The causative agent, cholera toxin, is an AB5-subunit enterotoxin produced by the bacterium Vibrio cholera. The toxin must enter the intestinal cell to cause disease. Entry is achieved by the B-subunit binding to a membrane lipid that carries the toxin all the way from the plasma membrane through the trans-Golgi to the endoplasmic reticulum (ER). Once in the ER, a portion of the A-subunit, the A1 chain, unfolds and separates from the B-subunit to retro-translocate to the cytosol. The A1 chain then activates adenylyl cyclase to cause disease. To study this pathway in intact cells, we used a mutant toxin with C-terminal extension of the B-subunit that contains N-glycosylation and tyrosine-sulfation motifs (CT-GS). This provides a biochemical readout for toxin entry into the trans Golgi (by 35S-sulfation) and ER (by N-glycosylation). In this chapter, we describe the methods we developed to study this trafficking pathway.


Asunto(s)
Toxina del Cólera/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Red trans-Golgi/metabolismo , Animales , Western Blotting , Células COS , Chlorocebus aethiops , Cólera/metabolismo , Cólera/patología , Toxina del Cólera/farmacología , Citosol/patología , Retículo Endoplásmico/patología , Glicosilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Células Vero , Red trans-Golgi/patología
11.
J Biol Chem ; 280(30): 28127-32, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15932873

RESUMEN

The enzymatic A1 chain of cholera toxin retrotranslocates across the endoplasmic reticulum membrane into the cytosol, where it induces toxicity. Almost all other retrotranslocation substrates are modified by the attachment of polyubiquitin chains and moved into the cytosol by the ubiquitin-interacting p97 ATPase complex. The cholera toxin A1 chain, however, can induce toxicity in the absence of ubiquitination, and the motive force that drives retrotranslocation is not known. Here, we use adenovirus expressing dominant-negative mutants of p97 to test whether p97 is required for toxin action. We find that cholera toxin still functions with only a small decrease in potency in cells that cannot retrotranslocate other substrates at all. These results suggest that p97 does not provide the primary driving force for extracting the A1 chain from the endoplasmic reticulum, a finding that is consistent with a requirement for polyubiquitination in p97 function.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Toxina del Cólera/química , Proteínas Nucleares/fisiología , Transporte de Proteínas , Adenosina Trifosfatasas/química , Adenoviridae/genética , Adenoviridae/metabolismo , Animales , Astrocitoma/metabolismo , Células COS , Línea Celular Tumoral , Toxina del Cólera/metabolismo , AMP Cíclico/metabolismo , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Electrofisiología , Retículo Endoplásmico/metabolismo , Genes Dominantes , Genes MHC Clase I/genética , Humanos , Inmunoprecipitación , Mutación , Proteínas Nucleares/química , Unión Proteica , Pliegue de Proteína , Factores de Tiempo , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA